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When it comes to complicated systems such as the climate, and economic, ecological and biolog-
ical systems, our influence runs ahead of our understanding. This can be perilous. The Defense
Advanced Research Projects Agency (DARPA) created the Big Mechanism program (BMP) to
develop technology for constructing, understanding and reasoning about big, complicated systems.
The focus of the program is cancer signaling pathways, but the technology is intended to apply
more generally. This paper describes the scientific and technical challenges of the BMP.

Imagine a future in which computers read the literature of cancer biology, extract fragments of
causal mechanisms from publications, assemble these mechanisms into executable models of un-
precedented scale and fidelity, use these models to explain and predict aspects of cancer biology,
and even test these predictions in vitro. The future is not yet here (the BMP started in July,
2014) but we can see its outlines and our first steps are clear. Roughly half of the program’s effort
goes into machine reading, the other half into assembling large, causal models and reasoning with
them. The BMP makes good use of existing online sources of biological knowledge, as well as
existing information extraction methods; while it develops representations and inference methods
for causal biological models, methods for machines to understand the claims and evidence in pa-
pers, algorithms for inferring causal relationships given data, and robotic techniques for testing
computer-generated hypotheses. The BMP focuses on Ras-driven cancers [28, 33, 59], as these are
among the least well-understood and most lethal cancers.

1 What is a Big Mechanism?

Science progresses from descriptions of specific phenomena to general, explanatory theories. When
explanatory theories are elusive, predictive models may still be useful. Big mechanisms are pre-
dictive models or explanatory theories that involve very large numbers of causal relations. This is
an idealization, of course, because not all the relations in big mechanisms will be causal; and some
relations that are thought to be causal are later shown not to be so; and as a practical matter,
scientists will often base predictions on non-causal correlates of causal factors. Still, big mech-
anisms differ from the associative models of data mining to the extent that they capture causal
relationships.

Signaling pathways are a good domain for the BMP because signaling reduces to biochemistry
and physics, and what could be more causal than that? But not all physicochemical models are
the same: Systems biologists make tradeoffs between the completeness of models, the uncertainty
associated with the parameters of these models, the amount of data available for estimating these
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Figure 1: An incomplete signaling pathway map of Ras (excerpted from [59])

parameters, the “readability” of a model by other biologists, and the tractability of computation
with the models (see [1, 27, 58, 4] for good introductions to these issues). The biologists in the
BMP generally favor rule-based and agent-based simulation models or logical rewriting models that
capture some but not all of the details of the underlying biochemistry [4, 14, 21, 43, 61, 62]. These
approximations are necessary because of the combinatorial complexity of molecular interactions
and the lack of empirical data to calibrate model parameters for these interactions. Also, there
is some concern that model parameters do not constrain model behavior [23]. So for the time
being, big mechanism models of signaling will be “coarse” in various ways. The challenge will be to
manage multiple drafts of models in a way that makes them amenable to revision by both humans
and machines [41, 45, 44, 16].

The BMP intentionally does not commit to a single standard for formal biological models. At
present, BMP researchers are working with BioPAX [16], BEL [8], Pathway Logic (PL) [61, 62],
BioNetGen [20] and Kappa [14] representations, and some researchers are developing high-level
programming languages that compile down to ODE models and other formalisms [4, 21, 44]. Ideally,
the BMP will produce causal, executable models [26, 27, 45] that make strong predictions through
a combination of logical or probabilistic reasoning and powerful simulations.

Pathway “maps” – like the one shown in Figure 1, only much bigger – fall short of this ideal, but
can still be useful. Pathway maps are graphs in which the vertices are named entities (typically
proteins) and the edges usually represent protein-protein interactions. They are the weakest of
models because they make few if any testable predictions. They are generally incomplete and
they tell us nothing about the dynamic behavior of the cell over time.1 That said, pathway maps
summarize some of what we know about signaling; they are the starting point for more expressive
graphical representations and interactomes and scaffolds [16, 32, 37, 42, 57, 51]; and they are an
appropriate target representation for machine reading, which at present extracts little more than
interactions between proteins from text.

In addition to models of biological processes, the BMP is developing novel representations for the
contents of tables, for the structure of experimental protocols [52], for typical statistical analyses, for
rhetorical devices and epistemic or qualified assertions [17, 35, 56], and for other kinds of contents
of research papers. These kinds of content are often “meta” to the biological models, but they are
important elements of publications because they establish the reasons to believe or doubt models.
If a paper says, “mutant and wildtype responded differently to x, suggesting a therapeutic effect
of x on y,” then a Big Mechanism system should extract both a model fragment that relates x and
y and also the uncertainty conveyed by the “suggesting” construction.

1Frank McCormick, personal communication
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Figure 2: A rough architecture for Big Mechanism systems

2 Big Mechanism Systems

Several consortia of academic and industry researchers are building Big Mechanism systems2. The
technologies and use cases for these systems vary, but all of the systems are being developed along
the lines shown in Figure 2. Big Mechanism systems are expected to read as researchers do: with
models in mind. A system will first do shallow reading to discover the entities, relations, events and
processes that a text describes. Shallow reading will help a model manager retrieve one or more
extant models that the text might be discussing. Deep reading, also called reading with a model,
will discover what the text says about these models.

One might think that machines would have little difficulty reading papers in cancer biology because
the language they contain seems very “close” to biological phenomena. To a human, a sentence like,
“Ras acts as a molecular switch that is activated upon GTP loading and deactivated upon hydrolysis
of GTP to GDP” seems clear enough, but consider what a machine must do to understand it (see
also [30]):

• Figure out the entities – Ras, GTP and GDP – and associate them with standard ontology
entries when possible;

• Understand coreferences, or multiple references to the same entity (e.g., the second mention
of GTP refers to the same entity as the first one) and anaphoric references (e.g., “that” refers
to “molecular switch,” which itself refers to Ras);

• Recognize activation, loading, and hydrolysis as events;

• Correctly place the entities in their appropriate roles in these events; for example, the subject
of activation is the molecular switch, and the subject of loading is not GTP but the switch;

• Weave these events into a causal story that unfolds over time. In this case, time is ordinal
and events are treated as instantaneous (indicated by “upon”), but in general, sentences may
contain kinematic information and finer temporal distinctions.

2The participants are: University of Arizona (Surdeanu, PI); Carnegie Mellon University (Hovy, PI and Miskov-
Zivanov, PI); University of Chicago (Rzhetsky, PI); Cycorp, (Lenat and Witbrock, PIs); Harvard University (Fontana,
PI and Sorger, PI); IHMC (Allen, PI); USC/ISI (Marcu, PI); Leidos (Morgenstern and Demir, PIs); SIFT (Burstein,
PI); SRI International (Freitag and Rohwer, PIs). MITRE (Hirschman, PI) will conduct evaluations.
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“Nicotine induces the binding of
Raf-1 to Rb in HAEC and A549
cells as seen by IP/Western blot-
ting.”

statement1 = bind(entity1=Raf1,entity2=Rb)
statement2 = induce(entity1=Nicotine, process1 = statement1)

“Rb binds to E2F” ComplexAssembly(In(Rb, E2F), Out(Complex(Rb, E2F)))
“transactivation capacity of E2F” TemplateRegulation(In(E2F))
“Rb ... inhibits the transactivation
capacity of E2F.”

DownRegulation(Controller(Rb), Controlled(TemplateRegulation(In(E2F))))

“MEK2/ERK2 catalyzes its own
phosphorylation.”

(c / catalyze-01
:ARG0 (m / macro-molecular-complex

:part (e / enzyme :name (n / name :op1 “MEK2”))
:part (e2 / enzyme :name (n2 / name :op1 “ERK2”)))

:ARG1 (p / phosphorylate-01
:ARG1 m))

Table 1: Some intermediate representations of sentences.

The Big Mechanism consortia are adapting prior information extraction and machine reading meth-
ods to deal with cancer biology texts. In most cases, the approach is to create an intermediate formal
representation that “connects” a text to biological models in the sense that it can be derived from
text and its elements can be unified with elements of biological models (e.g., [2, 5, 13, 31, 43, 49, 54]).
As can be seen in Table 1, these representations are syntactically diverse, but all are hierarchical
and composed of predicate-argument assertions, where the predicate is an event such as binding or
a modifier such as concentration and the arguments are generally biological entities3. Extracting
these structures from texts generally requires rules that look for patterns in text (e.g., equations
2-9 of [31]), although sometimes the rules work on the results of parsing the text. These rules are
built by humans, or machines can learn them from annotated corpora (e.g., [11, 34, 65]).

Current approaches can extract entities from text and find mentions of events and processes with
middling accuracy (e.g., [34, 39, 40, 65, 66, 50]). The consortia will try to improve on these
technologies by reading with models, that is, exploiting the context provided by models. For
example, if one has a prior model of molecular switches that includes “slots” for activating and
de-activating events, and the model specifies that the same entity can participate in both activating
and de-activating the switch, then a likely interpretation of the two mentions of GTP is that they
are coreferring: GTP is one entity in both the activating and de-activating events.

Barely six months into the BMP, we see only limited attempts at reading with models, and
much of that is concerned with coreference resolution and its cousin, event coreference resolu-
tion [29]. But models do far more than help to resolve ambiguities in text. For example, Emek
Demir and the Leidos Big Mechanism team realized tables encode relationships among the bi-
ological entities represented by columns, inducing a kind of model. Moreover, each row rep-
resents an instance of each of these relationships. For example, some tables encode triples of
the form columnName(rowName,cellEntry), where the column name is a relationship such as
phosporylates and the row name and cell entry are the respective subject and object (or vice
versa) of the relationship. The precise nature of the relationships encoded in a table may not be
clear, especially because column and row headings may be arbitrary symbols. One way to determine

3The three rows of the table are based on personal communications from Andrey Rzhetsky, Mihai Surdeanu, and
Daniel Marcu, respectively.
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their meaning is to ask whether whether any row in the table corresponds to a known, standardized
biological model. This is accomplished by searching BioPAX for fragments that contain the terms
in the row labels and cell entries. If some models are found, they are processed to construct a tem-
plate model that covers most or all of them. Assuming that all the rows in the table have identical
semantics, each row is an instance of the template model, and so can used to enrich BioPAX. Thus,
a few rows serve to retrieve model fragments and construct a model, and the remaining rows –
which may number in the hundreds – constitute new model instances.

The focus on the relationships between models and text (including tables) is a distinctive aspect of
the program, one that is expected to extract much more content from the literature than current
methods do. The relationships between text and models that matter most, of course, suggest
revisions to models. A text might suggest specializing part of a model by, for example, introducing
a novel protein species. Or a text might narrow the scope of a model to a particular tissue type.
A text might generalize a mechanism, or suggest that several mechanisms are actually just one,
parameterized differently. Texts can suggest alternative mechanisms, such as alternative signaling
cascades that target the same cell function. Some texts address models indirectly, by speaking to
the evidence that supports the models; for example, texts can contradict previous findings, thereby
eroding support for extant models.

The results of reading, then, are suggested revisions to prior models and the evidence that supports
them. The task of evaluating these suggestions and implementing some of them is called assembly.
At present, no Big Mechanism system does assembly, although most participants in the BMP have
developed technology to organize large numbers of logical or probabilistic assertions into theories,
or consistent sets, or most-probable groupings.

The greatest challenge posed by assembly will be managing the proliferation of models and meta-
data that stand in various relations to each other (the model manager box in Fig. 2). It is unrealistic
to think that there is “one true model” of anything and that the job of Big Mechanism systems is
to discover it. Even if there were one true model of, say, one particular Ras-driven cancer, it would
not spring into being fully formed like Athena from the brow of Zeus, but would be uncovered in
stages, by consulting multiple publications, and it would be revised in light of new evidence. How
are multiple drafts of models maintained? How shall we organize the evidence for these models?
How shall we recognize the overlapping or contradicting parts of models [18, 38]? How shall we
organize models of “one thing” – say, Ras signaling – that are actually families of models specific
to organisms, tissue types, and mutations? The complexity of model management is compounded
by the need for qualitatively different kinds of models for different kinds of reasoning. As noted,
pathway maps might serve to summarize molecular interactions, while physicochemical models –
more or less coarse-grained – are required to simulate the kinetics of these interactions.

Abstraction, modularity and re-use of models will probably facilitate model management [44],
although to the best of our knowledge, model management by machines is a new area of science.

Any solution to the model-management problem should depend on the anticipated uses of models
(see the box labeled “reasoning” in Fig. 2). The Big Mechanism consortia are focusing on several
use cases, of which the most promising are curation and predicting and testing the effects of
interventions. Curation refers to a growing movement in biology to have humans translate scientific
articles into formal representations that can be processed by machines [7, 9, 24]. Even if Big
Mechanism technologies do not automate curation, they could reduce the human effort expended
on mundane aspects of the job [25, 49, 55]. And humans could help solve problems that the machines
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may not be able to solve alone, such as figuring out which assertions in papers are relevant to a
user’s curation task [50], or detecting subtle elisions or obfuscations that are intended to make
results seem more general or convincing. Machines might have trouble understanding things that
are not said or are said artfully, and might do well to rely on humans to uncover rhetorical subtleties.
One particularly attractive aspect of human-computer curation is that each chunk of work provides
training data for machine learning, hastening the day when machines can curate all by themselves.

The second major use case for the BMP is testing interventions. Several BMP teams are focus-
ing on predicting effects of interventions and testing these predictions in simulations that run on
conventional computers as well as on Field Programmable Gate Array platforms [47]. The BMP
is also able to test predictions in vitro, including a fully-automated robotic system that can set up
experiments to test hypotheses generated by Big Mechanism systems [36, 46]. Note that making
predictions about interventions does not require complete physicochemical models with correct ki-
netics and all their parameters correctly specified. This is a good thing, not only because these
models are hard to build and test [27] but also because of a concern that model parameters do not
constrain model behavior [23].

This use case stops short of drug discovery. The BMP focuses on computer-based technologies
for understanding complicated systems, and to demonstrate understanding it suffices to make cor-
rect predictions about interventions. It is not necessary to go further and actually develop the
interventions into drugs, nor does the BMP have the expertise to do so.

3 Big Mechanism and the Practice of Science

Every data point is a complicated function of causal influences. The methods of experimental science
give us knowledge of two kinds: They establish causality among tiny numbers of factors, and they
quantify the influence of other factors as variance. But of course, this is an idealization. p values
generally are pointless, few people report effect sizes, and experiments are done in dramatically
different contexts. All of which means that the literature comprises thousands of narrow causal
assertions of varying quality. We try to figure out complicated systems assertion by assertion. No
wonder replicability can be a problem.

However, the purpose of the BMP is not to overturn the experimental methods that have given us
great scientific insights. In fact, the BMP assumes that, for now, humans are the best practitioners
of experimental methods, and takes researchers at their word until there’s a reason not to. This is
one reason why the BMP begins with research papers and tries to assemble models that integrate
many causal assertions, collectively. This approach addresses implicitly the vulnerability of taking
authors at their word. Often, the assertions of authors matter less than how these assertions stand
in relation to others. Often, these assertions are inconsistent or mutually contradictory [18, 38].
The better we can assemble causal assertions from many sources into large models, the better we
will be able to evaluate new assertions. Of course, “we” includes computers, as only computers can
evaluate how a causal assertion stands in relation to thousands of others derived from an enormous
literature.

With the exception of some work on algorithms for inferring causal structure from data, and the
possibility that data from BMP-proposed experiments will feed back into modeling, the BMP does
nothing with primary data. Its “data” are the assertions made by authors. There is plenty of
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work on inducing biological models directly from data (e.g., [6, 48, 51, 60, 64]), and clearly the
bewildering diversity of oncogenic mutations recommends big data approaches to therapy [63]. But
the BMP is not a big data program, a cancer therapy program, or even a cancer biology program.
It is a program designed to develop technologies to help scientists understand very complicated
systems, generally.

The biggest contribution of Big Mechanism might be to change how knowledge is organized and
communicated. We still work in a medieval tradition in which each of us searches the literature
for very large numbers of narrow results and pulls them into our heads for synthesis into big
mechanisms or causal understandings. This “pull” scholarship is enormously wasteful. It works
less and less well because there are simply too many results to synthesize in our heads. We can’t
read any faster than we already do, but the literature grows at an increasing rate, so we read more
narrowly. Just when we need to understand highly connected systems as systems our research
methods force us to focus on little parts. If the BMP works, it will be the first demonstration of a
new kind of “push” scholarship where, instead of pulling results into our heads, we push results into
machine-maintained big mechanisms, where they can be examined by anyone. This could change
science profoundly.
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